MySQL查询性能优化 - 链路追踪

2023年01月01日 2140点热度 0人点赞 0条评论

MySQL优化器可以生成Explain执行计划,我们可以通过执行计划查看是否使用了索引,使用了哪种索引?
但是到底为什么会使用这个索引,我们却无从得知。
好在MySQL提供了一个好用的分析工具 — optimizer trace(优化器追踪),可以帮助我们查看优化器生成执行计划的整个过程,以及做出的各种决策,包括访问表的方法、各种开销计算、各种转换等。

1. 查看optimizer trace配置

show variables like '%optimizer_trace%';

输出参数详解:

optimizer_trace 主配置,enabled的on表示开启,off表示关闭,one_line表示是否展示成一行
optimizer_trace_features 表示优化器的可选特性,包括贪心搜索、范围优化等
optimizer_trace_limit 表示优化器追踪最大显示数目,默认是1条
optimizer_trace_max_mem_size 表示优化器追踪占用的最大容量
optimizer_trace_offset 表示显示的第一个优化器追踪的偏移量

2. 开启optimizer trace

optimizer trace默认是关闭,我们可以使用命令手动开启:

SET optimizer_trace="enabled=on";

3. 线上问题复现

先造点数据备用,创建一张用户表:
CREATE TABLE `user` (
`id` int NOT NULL AUTO_INCREMENT COMMENT '主键',
`name` varchar(100) NOT NULL COMMENT '姓名',
`gender` tinyint NOT NULL COMMENT '性别',
PRIMARY KEY (`id`),
KEY `idx_name` (`name`),
KEY `idx_gender_name` (`gender`,`name`)
) ENGINE=InnoDB COMMENT='用户表';

创建了两个索引,分别是(name)和(gender,name)。
执行一条SQL,看到底用到了哪个索引:
explain select * from user where gender=0 and name='一灯';

这次竟然用了(name)上面的索引,同一条SQL因为传参不同,而使用了不同的索引。
到这里,使用现有工具,我们已经无法排查分析,MySQL优化器为什么使用了(name)上的索引,而没有使用(gender,name)上的联合索引。

只能请今天的主角 —optimizer trace(优化器追踪)出场了。

4. 使用optimizer trace

使用optimizer trace查看优化器的选择过程:
SELECT * FROM information_schema.OPTIMIZER_TRACE\G

查询即可得到trace信息。trace信息以json格式输出,通过\G可以格式化输出trace信息,更宜于阅读。如下所示:

MariaDB [weather_ical]>
MariaDB [weather_ical]> SELECT * FROM information_schema.OPTIMIZER_TRACE\G
*************************** 1. row ***************************
                            QUERY: explain select * from user where gender=0 and name='赵六'
                            TRACE: {
  "steps": [
    {
      "join_preparation": {
        "select_id": 1,
        "steps": [
          {
            "expanded_query": "select `user`.`id` AS `id`,`user`.`name` AS `name`,`user`.gender AS gender from `user` where `user`.gender = 0 and `user`.`name` = '赵六'"
          }
        ]
      }
    },
    {
      "join_optimization": {
        "select_id": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "`user`.gender = 0 and `user`.`name` = '赵六'",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "`user`.`name` = '赵六' and multiple equal(0, `user`.gender)"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "`user`.`name` = '赵六' and multiple equal(0, `user`.gender)"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "`user`.`name` = '赵六' and multiple equal(0, `user`.gender)"
                }
              ]
            }
          },
          {
            "table_dependencies": [
              {
                "table": "user",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": []
              }
            ]
          },
          {
            "ref_optimizer_key_uses": [
              {
                "table": "user",
                "field": "name",
                "equals": "'赵六'",
                "null_rejecting": false
              },
              {
                "table": "user",
                "field": "gender",
                "equals": "0",
                "null_rejecting": false
              },
              {
                "table": "user",
                "field": "name",
                "equals": "'赵六'",
                "null_rejecting": false
              }
            ]
          },
          {
            "rows_estimation": [
              {
                "table": "user",
                "range_analysis": {
                  "table_scan": {
                    "rows": 4,
                    "cost": 3.8
                  },
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",
                      "usable": false,
                      "cause": "not applicable"
                    },
                    {
                      "index": "idx_name",
                      "usable": true,
                      "key_parts": ["name", "id"]
                    },
                    {
                      "index": "idx_gender_name",
                      "usable": true,
                      "key_parts": ["gender", "name", "id"]
                    }
                  ],
                  "best_covering_index_scan": {
                    "index": "idx_gender_name",
                    "cost": 1.819871834,
                    "chosen": true
                  },
                  "setup_range_conditions": [],
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "idx_name",
                        "ranges": ["(赵六) <= (name) <= (赵六)"],
                        "rowid_ordered": true,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 1,
                        "cost": 1.349955752,
                        "chosen": true
                      },
                      {
                        "index": "idx_gender_name",
                        "ranges": ["(0,赵六) <= (gender,name) <= (0,赵六)"],
                        "rowid_ordered": true,
                        "using_mrr": false,
                        "index_only": true,
                        "rows": 1,
                        "cost": 0.349967958,
                        "chosen": true
                      }
                    ],
                    "analyzing_roworder_intersect": {
                      "intersecting_indexes": [
                        {
                          "index": "idx_name",
                          "index_scan_cost": 1.004955752,
                          "cumulated_index_scan_cost": 1.004955752,
                          "disk_sweep_cost": 1.000763359,
                          "cumulative_total_cost": 2.005719111,
                          "usable": true,
                          "matching_rows_now": 1,
                          "intersect_covering_with_this_index": false,
                          "chosen": true
                        },
                        {
                          "index": "idx_gender_name",
                          "index_scan_cost": 1.004967958,
                          "cumulated_index_scan_cost": 2.009923711,
                          "disk_sweep_cost": 0,
                          "cumulative_total_cost": 2.009923711,
                          "usable": true,
                          "matching_rows_now": 0.5,
                          "intersect_covering_with_this_index": true,
                          "chosen": false,
                          "cause": "does not reduce cost"
                        }
                      ],
                      "clustered_pk": {
                        "clustered_pk_added_to_intersect": false,
                        "cause": "no clustered pk index"
                      },
                      "chosen": false,
                      "cause": "cost"
                    },
                    "analyzing_index_merge_union": []
                  },
                  "group_index_range": {
                    "chosen": false,
                    "cause": "no group by or distinct"
                  },
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "idx_gender_name",
                      "rows": 1,
                      "ranges": ["(0,赵六) <= (gender,name) <= (0,赵六)"]
                    },
                    "rows_for_plan": 1,
                    "cost_for_plan": 0.349967958,
                    "chosen": true
                  }
                }
              },
              {
                "table": "user",
                "rowid_filters": [
                  {
                    "key": "idx_name",
                    "build_cost": 0.134955752,
                    "rows": 1
                  },
                  {
                    "key": "idx_gender_name",
                    "build_cost": 0.134967958,
                    "rows": 1
                  }
                ]
              },
              {
                "selectivity_for_indexes": [
                  {
                    "index_name": "idx_gender_name",
                    "selectivity_from_index": 0.25
                  }
                ],
                "selectivity_for_columns": [],
                "cond_selectivity": 0.25
              }
            ]
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [],
                "table": "user",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "access_type": "ref",
                      "index": "idx_name",
                      "used_range_estimates": true,
                      "rows": 1,
                      "cost": 1.129955752,
                      "chosen": true
                    },
                    {
                      "access_type": "ref",
                      "index": "idx_gender_name",
                      "used_range_estimates": true,
                      "rows": 1,
                      "cost": 0.129967958,
                      "chosen": true
                    },
                    {
                      "type": "scan",
                      "chosen": false,
                      "cause": "cost"
                    }
                  ],
                  "chosen_access_method": {
                    "type": "ref",
                    "records": 1,
                    "cost": 0.129967958,
                    "uses_join_buffering": false
                  }
                },
                "rows_for_plan": 1,
                "cost_for_plan": 0.329967958,
                "pruned_by_hanging_leaf": true
              }
            ]
          },
          {
            "best_join_order": ["user"]
          },
          {
            "substitute_best_equal": {
              "condition": "WHERE",
              "resulting_condition": "`user`.gender = 0 and `user`.`name` = '赵六'"
            }
          },
          {
            "attaching_conditions_to_tables": {
              "attached_conditions_computation": [],
              "attached_conditions_summary": [
                {
                  "table": "user",
                  "attached": "`user`.`name` = '赵六'"
                }
              ]
            }
          }
        ]
      }
    },
    {
      "join_execution": {
        "select_id": 1,
        "steps": []
      }
    }
  ]
}
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
          INSUFFICIENT_PRIVILEGES: 0
1 row in set (0.001 sec)

5. 总结

通过trace,我们可能发现一些我们在explain中看不到的东西,当发现query并未产生并行查询计划时,可以将trace打开,可以协助我们发现查询不能并行化的原因,针对这些原因可以进行调整,如增加资源、调整参数、转换存储引擎、修改JOIN顺序等。

另外,trace还可以帮我们探索更高性能优化的可能,如前述实例,通过trace有针对性的调整JOIN顺序、增加索引等,也许可以收到更大的性能提升。

路灯

这个人很懒,什么都没留下

文章评论